M7210 Lecture 35 Monday, November 12, 2012

F[x]-modules: Analysis of single linear map

Suppose V is a finite-dimensional vector space over F and L : V — V is a linear map. As
explained in Lecture 33, we can view V as an F[z]-module, where the action of x on V'
is defined by zv = L(v). Let denote (V, L) denote the F[x]-module defined this way. In
the following, when I speak of V', I mean the F vector-space, and when I refer to (V, L), 1
mean the F[x] module.

In general,(V, L) is not cyclic. This is quite obvious if L is the zero map, for then the F|x]-
submodule of (V, L) generated by any non-zero vg € V' is just the one-dimensional subspace
spanned by vg. But though (V, L) may not be cyclic, it is at least finitely-generated as
an [F|x]-module, since any spanning set for V' as an F-vector space will obviously generate
(V,L) as an F[x]-module.

The rest of this lecture is based on N. Jacobson, Basic Algebra I, 2"? ed., pages 195-6.
Let V :={vo,...,v,} be a basis for V. We cannot expect V to be independent over F[z].
However, we have a surjection

& : Flz]" — (V, L)

of F[x]-modules defined by ®(e;) = v;, where & = {ey,...,e,} is the standard basis of

the free F[z]-module F[z]™. This choice of bases enables us “lift” L to Flz|". If L(v;) =
> i—1 aivj (ie., (L;VV) = (aj;)), then we define L(e;) = Y27, ajje;. This determines L
as an F[z]-module endomorphism of F[z]™. Observe that ®L = L&:
Flz]* % (V,L)
L | | L
Flz]» -2 (V,L)

Let R
ki :=ze; — L(e;) € Flz]", i=1,...,n. (%)

The k; all belong to the kernel of ®. Indeed, ®(ze;) = zv; (=) L(v;) = ®(L(e;)), (x)
being the definition of the F[x]-module structure in (V, L). It is not obvious that the k;
are actually an F[z]-module basis for ker ®, but we now prove this.

Lemma. ker ® is generated as an F[x]-module by the k;.

Proof. Suppose that g = > | g;(z)e; € ker®. We must show that g is in the Fz]-
submodule of F[z]" generated by the k;. Now, by (%), ze; = k; + L(e;). This implies that
each g;(z)e; can be written in the form . | h;(z)k; + > cie;, where ¢; € F. (This is
the crux of the proof, and it is indeed a strong statement. To understand what is being
claimed, write out a proof in the case that g;(x) = ax® + bz + ¢, a,b,c € F.) Since each
gi(x)e; can be written this way, so can g itself. Butif g =Y " | h;(z)k;+> ., cie; € ker @,
then Y 1 | ¢;e; € ker @, and hence Y ., ¢;u; = 0. But then, each ¢; = 0, since the v; are

independent. /111



Lemma. The k; are independent over F|z|, and hence they form a basis for ker ®.

Proof. Suppose Y ., h;(z)k; = 0. Then

n

Z hi(z)re; = Z hi(x) Z a;je; = Z Z hi(z)a;je;,

i=1 j=11i=1

and since the e; are independent,

n

hZ(QZ)QZ = Z hj (a:)aﬂ.

j=1

But this is impossible unless all the h;(z) vanish, for if any does not, let h,.(x) be the one

of highest degree. Then h,.(z)x = Z?zl hj(z)aj,, but this is impossible since the left hand

side has higher degree than the right. Thus, h;(z) = 0 for all 7. //]]/

The two lemmas show that ker @ is a free F[z]-module of rank n. If we let
K={k;|i=1,....,n},

and let ¢ denote the containment ker ® C Flz|™, then

T — a1l —ai12 s —Aai1n
—a21 T — a2 - —azn
(,; KE) = , ) . =zl — A.
—anl —Aan2 v T — A

In the next lecture, we will see what use we can make of this matrix.



